您所在的位置:首頁(yè) > 專(zhuān)業(yè)交流 > 放化療引起的口腔粘膜炎的發(fā)生機(jī)制和相關(guān)治療概述
上皮粘膜在放化療作用下發(fā)生炎癥反應(yīng)可導(dǎo)致粘膜炎,粘膜炎可影響胃腸道和口腔,導(dǎo)致患者疼痛、無(wú)法進(jìn)食、體重減輕甚至造成局部感染。此外,級(jí)別嚴(yán)重的粘膜炎可導(dǎo)致患者化療劑量降低或抗腫瘤治療延遲,最終影響患者的抗腫瘤療效和預(yù)后。大約30-40%接受化療的癌癥患者可發(fā)生粘膜炎,接受造血干細(xì)胞移植(Hematopoietic stem cell transplantation,HSCT)的患者這一比例上升到60-85%,接受放療聯(lián)合化療的頭頸部腫瘤(Head and neck cancer,HNC)患者粘膜炎的發(fā)生率上升到90%[1]。粘膜炎的程度不僅取決于抗腫瘤治療方案、劑量和給藥周期,還取決于患者自身因素。例如,女性患者在接受5-氟尿嘧啶(5-FU)治療時(shí)發(fā)生嚴(yán)重粘膜炎的風(fēng)險(xiǎn)更大[2],與5-氟尿嘧啶分解代謝的關(guān)鍵酶二氫嘧啶脫氫酶缺乏的患者類(lèi)似[3]。然而,受異常上皮增生影響的患者,如銀屑病,粘膜炎發(fā)病率明顯降低。一般來(lái)說(shuō),老年、女性、超重、藥物清除率降低和遺傳易感性是粘膜炎發(fā)生的風(fēng)險(xiǎn)因素。
粘膜炎的發(fā)生由一連串事件組成,這些事件可以分為五個(gè)階段,連續(xù)發(fā)生并在機(jī)制上相互關(guān)聯(lián)。粘膜損傷稱(chēng)為粘膜炎起始期,由放療和/或化療引起,與化療或放療同時(shí)發(fā)生。全身化療和放療誘導(dǎo)組織損傷,導(dǎo)致活性氧(Reactive oxygen species,ROS)釋放以及DNA損傷,從而導(dǎo)致基底和基底上皮細(xì)胞死亡[4]。特別是,DNA鏈斷裂激活細(xì)胞凋亡[5],壞死細(xì)胞釋放內(nèi)源性損傷相關(guān)的分子模式(DAMP),是粘膜炎發(fā)生的第二階段特征,損傷的粘膜細(xì)胞促進(jìn)參與粘膜炎過(guò)程的基因轉(zhuǎn)錄包括核因子-κB(NF-κB)和促炎細(xì)胞因子(TNF-α、 L-6、IL-1β)、細(xì)胞粘附分子等 [6-7]。促炎細(xì)胞因子也存在于粘膜內(nèi),可誘導(dǎo)結(jié)締組織和內(nèi)皮的早期損傷,并抑制組織氧化和促進(jìn)上皮基底細(xì)胞死亡。在這一階段, c-JUN和c-JUN氨基末端激酶(JNK)被激活,進(jìn)而引起細(xì)胞膜結(jié)合分子的釋放導(dǎo)致參與該過(guò)程的其他轉(zhuǎn)錄因子的激活[8]。如核因子-紅系2相關(guān)因子2(NRF2),它是一種堿性亮氨酸拉鏈蛋白,可促進(jìn)損傷和炎癥過(guò)程中抗氧化蛋白的表達(dá)[9]。此外,化療或放療也會(huì)損傷成纖維細(xì)胞,從而導(dǎo)致蛋白-1(AP1)的激活和金屬蛋白酶(MMPs)的分泌,如MMP1和MMP3,它們可降解膠原上皮下基質(zhì)和分解上皮基底膜。上述過(guò)程中產(chǎn)生的損傷反應(yīng)信號(hào)可不斷放大,在激活其他通路的同時(shí),通過(guò)正反饋機(jī)制放大了最初的損傷。如釋放的TNF-α啟動(dòng)靶細(xì)胞上絲裂原活化蛋白激酶(MAPK)的激活,同時(shí)也可維持NF-κB的活性。在這一階段,幾次損傷會(huì)損害粘膜和粘膜下結(jié)構(gòu)。然而,患者在此階段表現(xiàn)出的癥狀很少。MAPK信號(hào)傳導(dǎo)通過(guò)JNK的激活介導(dǎo)胱天蛋白酶3的激活和細(xì)胞死亡,進(jìn)而微調(diào)AP1的轉(zhuǎn)錄活性。此外,高水平的TNF-α激活鞘磷脂酶,增加神經(jīng)酰胺途徑介導(dǎo)的促凋亡信號(hào),并與IL-1β一起調(diào)節(jié)MMP1和MMP3的活性[10-11]。此外,受損的角蛋白細(xì)胞釋放轉(zhuǎn)化生長(zhǎng)因子β1(TGF-β1),進(jìn)而抑制細(xì)胞周期,募集白細(xì)胞并維持NF-κB活性,從而改善損傷介導(dǎo)的信號(hào)傳導(dǎo)[12]。粘膜炎的臨床表現(xiàn)在炎癥過(guò)程的第四階段,即潰瘍期是很明顯的。在此階段,粘膜和粘膜下的完整性受到破壞,患者會(huì)自述疼痛,需要進(jìn)行臨床干預(yù)。粘膜下層損傷的存在可導(dǎo)致單核細(xì)胞浸潤(rùn)介導(dǎo)的炎癥反應(yīng),從而促進(jìn)新的促炎細(xì)胞因子的釋放,從而放大促凋亡介質(zhì)的表達(dá)并增加組織損傷[13-14]。同時(shí)化療或放療后出現(xiàn)的中性粒細(xì)胞減少癥,其持續(xù)時(shí)間長(zhǎng)和嚴(yán)重程度,患者可能會(huì)出現(xiàn)菌血癥或敗血癥,主要由鏈球菌和葡萄球菌引起[15]。粘膜炎是一種急性反應(yīng),大多數(shù)可隨著抗腫瘤治療的結(jié)束而消退。在這個(gè)階段,愈合過(guò)程被激活,在此過(guò)程中,來(lái)自粘膜下層細(xì)胞外基質(zhì)和間充質(zhì)的刺激促進(jìn)組織上皮化[16]。
雖然目前臨床上有越來(lái)越多的新抗腫瘤藥物,但用于預(yù)防或治療粘膜炎的治療方案很少。值得注意的是,Palifermin是一種重組人角質(zhì)形成細(xì)胞生長(zhǎng)因子1(Keratinocyte growth factor 1,KGF-1),是唯一一個(gè)獲得FDA和EMA批準(zhǔn)的藥物,用于預(yù)防HSCT前接受高劑量化療加全身放療的口腔粘膜炎[17]。Palifermin可刺激上皮細(xì)胞增殖和分化,從而促進(jìn)化療和/或放療誘導(dǎo)的損傷后更快的組織再生。此外,它還具有抗氧化和抗凋亡活性以及抗促炎作用。該藥物在預(yù)防口腔粘膜炎方面的療效也在頭頸癌患者中得到了驗(yàn)證。兩項(xiàng)不同的研究表明,用Palifermin治療的患者表現(xiàn)出高級(jí)別(≥3級(jí))口腔粘膜炎的發(fā)生率較低[18-19],然而,該藥物的高成本和對(duì)該藥物可能會(huì)促進(jìn)腫瘤生長(zhǎng)使得其不適合用于HNC患者。此外下表中我們列舉了一些迄今為止在臨床前和臨床階段已經(jīng)證實(shí)可預(yù)防口腔粘膜炎的藥物,并根據(jù)其作用機(jī)制進(jìn)行分組。
表1根據(jù)作用機(jī)制對(duì)預(yù)防口腔粘膜炎的藥物進(jìn)行分組
分類(lèi) |
特點(diǎn) |
作用機(jī)制 |
參考文獻(xiàn) |
抗氧化劑 |
|||
氨磷汀 |
磷酸化氨基巰基化合物 |
促進(jìn) ROS 清除劑的募集,減少 DNA 鏈斷裂 |
[20-21]
|
谷氨酰胺 |
氨基酸 |
發(fā)揮抗氧化活性,促進(jìn)谷胱甘肽合成 |
[22]
|
口服補(bǔ)鋅制劑 |
必需礦物質(zhì) |
防止脂質(zhì)過(guò)氧化,取代氧化還原活性金屬,誘導(dǎo)金屬硫蛋白合成 |
[23]
|
維生素E |
脂溶性α-生育酚 |
防止 ROS 釋放引起的組織損傷 |
[24] |
N-乙酰半胱氨酸 |
天然氨基酸 L-半胱氨酸的 N-乙酰衍生物 |
發(fā)揮抗氧化活性,促進(jìn)谷胱甘肽合成、髓過(guò)氧化物酶活性、黃嘌呤脫氫酶和氧化酶活性。 |
[25-26]
|
炎癥和細(xì)胞因子生成抑制劑 |
|||
姜黃 |
姜黃屬花卉植物 |
降低NF-κB活性 |
[27] |
鹽酸芐達(dá)明沖洗液 |
吲唑類(lèi)非甾體抗炎藥 |
抑制促炎細(xì)胞因子TNF-α和IL-1β的活性和生成 |
[28-29]
|
己酮可可堿 |
黃嘌呤衍生物 |
調(diào)節(jié)免疫固有促炎反應(yīng) |
[30] |
多靶點(diǎn)天然藥物 |
|||
蜂蜜 |
外用物 |
減輕燒傷和壓迫傷口 |
[31-32] |
中草藥 |
靛藍(lán)根提取物 紅景天提取物 |
抗炎和抗病毒活性 刺激免疫系統(tǒng) |
[33-34]
|
洋甘菊漱口水 |
水注入粉末狀花 |
抗炎、鎮(zhèn)痛和抗小鼠和細(xì)菌活性 |
[35-36] |
蘆薈凝膠 |
蘆薈屬肉質(zhì)植物的汁液 |
促進(jìn)傷口愈合 |
[37] |
物理干預(yù) |
|||
低水平激光治療 |
低強(qiáng)度單色激光 |
促進(jìn)受損組織的再生 |
[38] |
口腔冷凍療法 |
冰片、冰塊 |
促進(jìn)局部血管收縮,從而減少粘膜對(duì)化療藥物的暴露 |
[39] |
口腔護(hù)理 |
由口腔護(hù)理專(zhuān)家進(jìn)行規(guī)范的口腔護(hù)理和頻繁的口腔檢查 |
預(yù)防感染 |
[40] |
乳桿菌膠囊 |
益生菌 |
保留粘膜腸道結(jié)構(gòu) |
[41-42] |
抗腫瘤治療的發(fā)展顯著改善了患者的生存率。然而,盡管治療變得越來(lái)越有效,但抗腫瘤治療誘導(dǎo)的口腔粘膜炎治療或預(yù)防僅有很少的有效選擇,口腔粘膜炎通常會(huì)導(dǎo)致治療終止或需要調(diào)整治療方案,同時(shí)增加了住院率,從而增加了公共衛(wèi)生成本并降低了患者的生活質(zhì)量。通過(guò)從機(jī)制方面深入了解并匯總相關(guān)的治療方案,利于臨床醫(yī)為不同的患者設(shè)計(jì)個(gè)體化靶向治療,降低嚴(yán)重不良反應(yīng)的發(fā)生,延長(zhǎng)抗腫瘤治療的治療時(shí)間,從來(lái)改善癌癥患者的生活質(zhì)量,從而降低其管理成本。
參考文獻(xiàn)
[1]Villa A, Sonis ST. Pharmacotherapy for the management of cancer regimen- related oral mucositis[J]. Expert Opin Pharmacother. 2016;17:1801–7.
[2] Chansky K, Benedetti J, Macdonald JS. Differences in toxicity between men and women treated with 5-fluorouracil therapy for colorectal carcinoma[J]. Cancer. 2005;103:1165–71.
[3] Sloan JA, Goldberg RM, Sargent DJ, Vargas-Chanes D, Nair S, Cha SS, et al. Women experience greater toxicity with fluorouracil-based chemotherapy for colorectal cancer[J]. J Clin Oncol. 2002;20:1491-8.
[4] Sonis ST. The pathobiology of mucositis[J]. Nat Rev Cancer. 2004;4:277-84.
[5] Manakova S, Puttonen KA, Raasmaja A,et al. Ara-C induces
apoptosis in monkey fibroblast cells[J]. Toxicol In Vitro. 2003;17:367–73.
[6] Logan RM, Stringer AM, Bowen JM,et al. Serum levels of NF-kappaB and pro-inflammatory cytokines following administration of mucotoxic drugs[J]. Cancer Biol Ther. 2008;7:1139–45.
[7] Logan RM, Stringer AM, Bowen JM, et al. The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: pathobiology, animal models and cytotoxic drugs[J]. Cancer Treat Rev. 2007;33:448-60.
[8] Davis RJ. Signal transduction by the JNK group of MAP kinases[J]. Cell. 2000; 103:239–52.
[9] Braun S, Hanselmann C, Gassmann MG, et al. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound[J]. Mol Cell Biol. 2002;22:5492–505.
[10] Bamba S, Andoh A, Yasui H,et al. Matrix metalloproteinase-3 secretion from human colonic subepithelial myofibroblasts: role of interleukin-17[J]. J Gastroenterol. 2003;38:548-54.
[11] Sasaki M, Kashima M, Ito T, et al. Differential regulation of metalloproteinase production, proliferation and chemotaxis of human lung fibroblasts by PDGF, interleukin-1beta and TNF- alpha. Mediators Inflamm. 2000;9:155-60.
[12] Bian L, Han G, Zhao CW,et al. The role of Smad7 in oral mucositis[J]. Protein Cell. 2015;6:160–9.
[13] Alikhani M, Alikhani Z, He H,et al. Lipopolysaccharides indirectly stimulate apoptosis and global induction of apoptotic genes in fibroblasts[J]. J Biol Chem. 2003;278:52901-8.
[14] Engels-Deutsch M, Pini A, Yamashita Y, et al. Insertional inactivation of pac and rmlB genes reduces the release of tumor necrosis factor alpha, interleukin-6, and interleukin-8 induced by Streptococcus mutans in monocytic, dental pulp, and periodontal ligament cells[J]. Infect Immun. 2003;71:5169-77.
[15] Mougeot JC, Stevens CB, Morton DS,et al;. Oral Microbiome and Cancer The rapy-Induced Oral Mucositis[J]. J Natl Cancer Inst Monogr. 2019;53:lgz002.
[16] Sonis ST. Pathobiology of mucositis[J]. Semin Oncol Nurs. 2004;20:11-5.
[17] Spielberger R, Stiff P, Bensinger W, Gentile T, et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers[J]. N Engl J Med. 2004;351:2590-8.
[18] Henke M, Alfonsi M, Foa P, et al. Palifermin decreases severe oral mucositis of patients undergoing postoperative radiochemotherapy for head and neck cancer: a randomized, placebo- controlled trial[J]. J Clin Oncol. 2011;29:2815–20.
[19] Le QT, Kim HE, Schneider CJ, et al. Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study[J]. J Clin Oncol. 2011;29:2808-14.
[20] Koukourakis MI. Amifostine in clinical oncology: current use and future applications. Anticancer Drugs. 2002;13:181-209.
[21] Mell LK, Movsas B. Pharmacologic normal tissue protection in clinical radiation oncology: focus on amifostine. Expert Opin Drug Metab Toxicol. 2008;4:1341-50.
[22] Blijlevens NM, Donnelly JP, Naber AH, Schattenberg AV, DePauw BE. A randomised, double-blinded, placebo-controlled, pilot study of parenteral glutamine for allogeneic stem cell transplant patients. Support Care Cancer. 2005;13:790-6.
[23] Cerchietti LC, Navigante AH, Lutteral MA, Castro MA, Kirchuk R, Bonomi M, et al. Double-blinded, placebo-controlled trial on intravenous L-alanyl-L-glutamine in the incidence of oral mucositis following chemoradiotherapy in patients with head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2006;65: 1330-7.
[24] Peterson DE. New strategies for management of oral mucositis in cancer patients. J Support Oncol. 2006;4:9-13.
[25] Vidal-Casariego A, Calleja-Fernandez A, Ballesteros-Pomar MD,et al. Efficacy of glutamine in the prevention of oral mucositis and acute radiation-induced esophagitis: a retrospective study[J]. Nutr Cancer. 2013;65:424-9.
[26] Ward E, Smith M, Henderson M, et al. The effect of high-dose enteral glutamine on the incidence and severity of mucositis in paediatric oncology patients[J]. Eur J Clin Nutr. 2009;63:134–40.
[27] Rao S, Dinkar C, Vaishnav LK, et al. The Indian Spice Turmeric Delays and Mitigates Radiation-Induced Oral Mucositis in Patients Undergoing Treatment for Head and Neck Cancer: An Investigational Study. Integr Cancer Ther. 2014;13:201-10.
[28] Epstein JB, Silverman S Jr, Paggiarino DA, et al. Benzydamine HCl for prophylaxis of radiation-induced oral mucositis: results from a multicenter, randomized, double-blind, placebo- controlled clinical trial[J]. Cancer. 2001;92:875-85.
[29] Kazemian A, Kamian S, Aghili M,et al. Benzydamine for prophylaxis of radiation-induced oral mucositis in head and neck cancers: a double-blind placebo-controlled randomized clinical trial[J]. Eur J Cancer Care (Engl). 2009;18:174-8.
[30] Kudrimoti M, Curtis A, Azawi S, et al. Dusquetide: A novel innate defense regulator demonstrating a significant and consistent reduction in the duration of oral mucositis in preclinical data and a randomized, placebo-controlled phase 2a clinical study[J]. J Biotechnol. 2016;239:115-25.
[31] Biswal BM, Zakaria A, Ahmad NM. Topical application of honey in the management of radiation mucositis: a preliminary study[J]. Support Care Cancer. 2003;11:242-8.
[32] Khanal B, Baliga M, Uppal N. Effect of topical honey on limitation of radiation-induced oral mucositis: an intervention study[J]. Int J Oral Maxillofac Surg. 2010;39:1181-5.
[33] You WC, Hsieh CC, Huang JT. Effect of extracts from indigowood root (Isatis indigotica Fort.) on immune responses in radiation-induced mucositis[J]. J Altern Complement Med. 2009;15:771-8.
[34] Loo WT, Jin LJ, Chow LW, et al. Rhodiola algida improves chemotherapy-induced oral mucositis in breast cancer patients. Expert Opin Investig Drugs. 2010;19(Suppl 1):91-100.
[35] Carl W, Emrich LS. Management of oral mucositis during local radiation and systemic chemotherapy: a study of 98 patients[J]. J Prosthet Dent. 1991;66: 361-9.
[36] Fidler P, Loprinzi CL, O’Fallon JR, et al. Prospective evaluation of a chamomile mouthwash for prevention of 5-FU- induced oral mucositis[J]. Cancer. 1996;77:522-5.
[37] Eilers J, Harris D, Henry K.Evidence-based interventions for cancer treatment-related mucositis: putting evidence into practice[J]. Clin J Oncol Nurs. 2014;18 Suppl:80-96.
[38] Chaveli-Lopez B, Bagan-Sebastian JV. Treatment of oral mucositis due to chemotherapy[J]. J Clin Exp Dent. 2016;8:e201-9.
[39] Peterson DE, Boers-Doets CB, Bensadoun RJ,et al. Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up[J]. Ann Oncol. 2015;26(Suppl 5):v139-151.
[40] Mego M, Chovanec J, Vochyanova-Andrezalova I, et al. Prevention of irinotecan induced diarrhea by probiotics: A randomized double blind, placebo controlled pilot study[J]. Complement Ther Med. 2015;23:356-62.
[41] Prisciandaro LD, Geier MS, Butler RN,et al. Probiotic factors partially improve parameters of 5-fluorouracil-induced intestinal mucositis in rats[J]. Cancer Biol Ther. 2011;11:671-7.
小細(xì)胞肺癌(SCLC)是一種難治、預(yù)后極差的肺癌亞型,其特征是快速生長(zhǎng)和早...[詳細(xì)]
意見(jiàn)反饋 關(guān)于我們 隱私保護(hù) 版權(quán)聲明 友情鏈接 聯(lián)系我們
Copyright 2002-2024 Iiyi.Com All Rights Reserved